
Public Key Setup | Configure ssh-agent Process | Agent Forwarding

Secure Shell (SSH) public key

authentication can be used by a

client to access servers, if properly

configured. These notes describe

how to configure OpenSSH for

public key authentication, how to

enable a ssh-agent to allow for

passphrase-free logins, and tips

on debugging problems with SSH

connections. Password free logins benefit remote access and automation, for

example if administering many servers or accessing version control software over

SSH.

Public key authenticate can prevent brute force SSH attacks, but only if all

password-based authentication methods are disabled. Other options to protect

against brute force SSH attacks include pam_tally, or port knocking. Public key

authentication does not work well with Kerberos or OpenAFS, which require a

password or principal from the client.

Definition of terms used in this documentation:

Client: the system one types directly on, such as a laptop or desktop system.

Server: anything connected to from the client. This includes other servers

accessed through the first server connected to.

Never allow root-to-root trust between systems. If required by poorly engineered

legacy scripts, limit the from access of the public keys, and if possible only allow

specific public keys to run specific commands. Instead, setup named accounts for

users or roles, and grant as little root access as possible via sudo.

For more information, see also SSH, The Secure Shell: The Definitive Guide.

OpenSSH Public Key Authentication http://sial.org/howto/openssh/publickey-auth/

1 of 8 09/08/09 11:40

SSHKeyChain offers integration between the Apple Keychain and OpenSSH.

Public Key Setup
Key Generation | Key Distribution | Key Access Limits

First, confirm that OpenSSH is the SSH software installed on the client system. Key

generation may vary under different implementations of SSH. The ssh -V command

should print a line beginning with OpenSSH, followed by other details.

$ ssh -V

OpenSSH_3.6.1p1+CAN-2003-0693, SSH protocols 1.5/2.0, OpenSSL 0x0090702f

Key Generation

A RSA key pair must be generated on the client system. The public portion of this key

pair will reside on the servers being connected to, while the private portion needs to

remain on a secure local area of the client system, by default in ~/.ssh/id_rsa. The

key generation can be done with the ssh-keygen(1) utility.

client$ mkdir ~/.ssh

client$ chmod 700 ~/.ssh

client$ ssh-keygen -q -f ~/.ssh/id_rsa -t rsa

Enter passphrase (empty for no passphrase): …

Enter same passphrase again: …

Do not use your account password, nor an empty passphrase. The password should

be at least 16 characters long, and not a simple sentence. One choice would be

several lines to a song or poem, interspersed with punctuation and other non-letter

characters. The ssh-agent setup notes below will reduce the number of times this

passphrase will need to be used, so using a long passphrase is encouraged.

The file permissions should be locked down to prevent other users from being able

to read the key pair data. OpenSSH may also refuse to support public key

authentication if the file permissions are too open. These fixes should be done on all

systems involved.

$ chmod go-w ~/

$ chmod 700 ~/.ssh

$ chmod go-rwx ~/.ssh/*

OpenSSH Public Key Authentication http://sial.org/howto/openssh/publickey-auth/

2 of 8 09/08/09 11:40

Key Distribution

The public portion of the RSA key pair must be copied to any servers that will be

accessed by the client. The public key information to be copied should be located in

the ~/.ssh/id_rsa.pub file on the client. Assuming that all of the servers use

OpenSSH instead of a different SSH implementation, the public key data must be

appended into the ~/.ssh/authorized_keys file on the servers.

first, upload public key from client to server

client$ scp ~/.ssh/id_rsa.pub server.example.org:

next, setup the public key on server

server$ mkdir ~/.ssh

server$ chmod 700 ~/.ssh

server$ cat ~/id_rsa.pub >> ~/.ssh/authorized_keys

server$ chmod 600 ~/.ssh/authorized_keys

server$ rm ~/id_rsa.pub

Be sure to append new public key data to the authorized_keys file, as multiple public

keys may be in use. Each public key entry must be on a different line.

Many different things can prevent public key authentication from working, so be sure

to confirm that public key connections to the server work properly. If the following

test fails, consult the debugging notes.

client$ ssh -o PreferredAuthentications=publickey server.example.org

Enter passphrase for key '/…/.ssh/id_rsa': …

…

server$

Key distribution can be automated with module:authkey and CFEngine. This script

maps public keys stored in a filesystem repository to specific accounts on various

classes of systems, allowing a user key to be replicated to all systems the user has

access to.

If exporting the public key to a different group or company, consider removing or

changing the optional public key comment field to avoid exposing the default

username and hostname.

Key Access Limits

OpenSSH Public Key Authentication http://sial.org/howto/openssh/publickey-auth/

3 of 8 09/08/09 11:40

As an optional step to limit usage of the public key for access to any servers, a from

statement can be used before public key entries in the ~/.ssh/authorized_keys file

on the servers to limit where the client system is permitted to access the server

from. Without a from limit, any client system with the appropriate private key data

will be able to connect to the server from anywhere. If the keypair should only work

when the client system is connecting from a host under example.org, set

from="*.example.org" before the public key data.

server$ cat ~/.ssh/authorized_keys

from="*.example.org" ssh-rsa AAAAB3NzaC1…

If a text editor is used to add the from option, ensure the data is saved as a single

line; some editors may wrap the public key and thus corrupt the data. Each public

key in the ~/.ssh/authorized_keys file must not span multiple lines.

Multiple hosts or addresses can be specified as comma separated values. For more

information on the syntax of the from option, see the sshd(8) documentation.

from="*.example.org,10.*,external.example.com" …

Configure ssh-agent Process

To reduce the frequency with which the key passphrase must be typed in, setup a

ssh-agent(1) daemon to hold the private portion of the RSA key pair for the duration

of a session. There are several ways to run and manage ssh-agent, for example from

a X11 login script or with a utility like Keychain. These notes rely on the setup of

ssh-agent via an @reboot crontab(5) entry, along with appropriate shell

configuration.

The ssh-agent must only be run on the client system. The private key of the RSA key

pair must remain on the client system. Agent forwarding should be used to make the

key available to subsequent logins to other servers from the first server connected

to.

Startup cron job1.

OpenSSH Public Key Authentication http://sial.org/howto/openssh/publickey-auth/

4 of 8 09/08/09 11:40

The following crontab(5) entry should run the agent at system startup time.

The crond daemon on BSD and Linux systems should support the special

@reboot syntax required for this to work.

@reboot ssh-agent -s | grep -v echo > $HOME/.ssh-agent

To setup the agent for the first time without having to reboot the system, run

the following.

$ nohup ssh-agent -s > ~/.ssh-agent

Once the ssh-agent is running, any shells already running will need to source in

the environment settings from the ~/.ssh-agent file. The SSH_AUTH_SOCK and

SSH_AGENT_PID environment variables set in this file are required for the

OpenSSH commands such as ssh and ssh-add to communicate with the

ssh-agent on the client system.

$. ~/.ssh-agent

Notes on configuring all shells to be able to run arbitrary commands are

available. This reduces the initial setup to the following commands, which can be

done from the script reagent.

$ nohup ssh-agent -s | grep -v echo > ~/.ssh-agent

$ allsh - < ~/.ssh-agent

If csh or tcsh is being used instead of a Bourne-based shell, replace the -s

argument with -c, and the source command used instead of . in any running

shells.

Shell startup script changes2.

The shell’s startup script on the client system will need to be modified to pull in

the required environment settings from ~/.ssh-agent and setup useful aliases.

The agent settings in ~/.ssh-agent should not be read in if the client system is

being connected to as a server. Remote connections set the SSH_CLIENT

OpenSSH Public Key Authentication http://sial.org/howto/openssh/publickey-auth/

5 of 8 09/08/09 11:40

environment variable, so ~/.ssh-agent must not be read in when this variable

contains data.

[-z "$SSH_CLIENT"] && . $HOME/.ssh-agent

alias keyon="ssh-add -t 10800"

alias keyoff='ssh-add -D'

alias keylist='ssh-add -l'

The -t option to ssh-add will remove keys from memory after the specified

number of seconds. This option prevents the keys from being left unlocked for

long periods of time. Older versions of OpenSSH will not have the timeout -t

option.

For the csh and tcsh shells, slightly different configuration of the agent and

aliases is required. Consult the relevant ssh-agent(1) and shell documentation.

Once the ssh-agent is running and shell configured to read in the appropriate

settings and set easy aliases, enable the key then test a login to a remote server.

The keyon will only need to be run when initially adding the private key data to

ssh-agent, and only rerun if ssh-agent is restarted or the key is removed with

keyoff.

client$ keyon

…

client$ ssh server.example.org

server$ exit

client$ keyoff

Use the keylist command to see what keys are in the agent process.

$ keylist

1024 01:a1:aa:34:21:bc:7d:a4:ea:56:a4:a1:1a:c5:fa:9f /home/…/.ssh/id_rsa (RSA)

If password free logins do not work, see tips on debugging problems with SSH

connections to work out where the problem may be.

To make other applications not run from a shell aware of the agent, the environment

OpenSSH Public Key Authentication http://sial.org/howto/openssh/publickey-auth/

6 of 8 09/08/09 11:40

definitions in the ~/.ssh-agent file will need to be read into the software in question.

Consult the documentation for the software to see whether this is possible.

Agent Forwarding

For simple client to server connections, SSH agent forwarding will not be a concern.

However, if from the server connected to, one logs into other servers, SSH agent

forwarding will need to be enabled. If SSH agent forwarding is disabled, a private

key must be available on the proxy system that is recognized by the server being

connected to.

To enable forwarding, either use the -A option to ssh when connecting, or set

ForwardAgent in an OpenSSH config file, such as ~/.ssh/config. Note that command

line arguments override the user-specific configuration file, which in turn can override

the global ssh_config configuration file, if any.

Host *

 ForwardAgent yes

 ForwardX11 no

Agent (and X11) forwarding may represent a security risk, providing more options to

an attacker on a compromised server to work back to the client system. If paranoid,

disable Agent and X11 forwarding by default, and only enable the features where

needed. Also enable StrictHostKeyChecking and use configuration management

software such as CFEngine to distribute a global ssh_known_hosts file to all client

systems.

OpenSSH Public Key Authentication http://sial.org/howto/openssh/publickey-auth/

7 of 8 09/08/09 11:40

Questions or comments about this page? Current ruminations available on

my blog.

$Id: index.xml,v 2.15 2009/04/25 05:52:36 jmates Exp $

OpenSSH Public Key Authentication http://sial.org/howto/openssh/publickey-auth/

8 of 8 09/08/09 11:40

